
#EmbeddedOSSummit

Application Development with TDD

Luis Ubieda
Lead FW Engineer

@ubieda

Getting Started

linkedin.com/in/luisubieda



- Intro

- Basics of Test-Driven Development (TDD)

- TDD in Zephyr

- Faking dependencies (Device-Tree Nodes and Subsystems)

- Live Demo

- Q&A

Agenda



Intro



About Me

Luis Ubieda

- Electrical Engineer

- Lead Firmware Engineer @ Croxel

- 7 Years developing Firmware

- Based in Melbourne, FL (Space Coast)

- Passion for Technology, Electronics and IoT

- First Zephyr Contribution on 2021

- Free-Time: Fitness and Sports

- Blogger: https://embeddedtales.blog

- First Time Speaker at EOSS

Rocket Launch every other week at the Space Coast.
Image Source: visitspacecoast.com

https://croxel.com/
https://embeddedtales.blog


About Croxel
- Deep Zephyr RTOS expertise for tailored, technically 

sound solutions.

- End-to-end product development capabilities aligned 

with your goals.

- Rapid prototyping and low-power optimization for 

faster time-to-market.

- Seamless integration with your teams across all areas 

of development.

- Active contributions to the Zephyr Project and 

continuous community involvement.



Basics of
Test-Driven Development



Basics of Test-Driven Development (TDD)

Fundamentals

- Comes from Extreme Programming (XP).

- Opposite to typical Waterfall-type development (develop first, test later).

- Focuses on incremental development.

- Embraces the fact that bugs are inevitable.

- Relies on capturing and passing Unit Tests as means to develop the 

application.



Basics of Test-Driven Development (TDD)

Bugs in a Regular Development Cycle

Source: Test-Driven Development for Embedded C, James Grenning



Basics of Test-Driven Development (TDD)

Bugs in a TDD Development Cycle

Source: Test-Driven Development for Embedded C, James Grenning



Basics of Test-Driven Development (TDD)

Steps to Progress on TDD

- Start with a List of Requirements.

- From requirements to a List of Tests.

- One test at a time.

- Iteration Cycle: Fail -> Pass -> Refactor.

- Capture new test-cases while iterating.

Image Source: https://marsner.com/blog/why-test-driven-development-tdd/



Basics of Test-Driven Development (TDD)

Example Requirements - Motion Detection Engine

1. The Possible Motion states are: Movement, Idle or Unknown.

2. Upon initialization the motion state is Unknown.

3. Idle means no motion has occurred in the last 5 seconds.

4. Movement means detecting at least 2 m/s2 acceleration on 

any axis for at least 1 second.

5. A Motion State change triggers an event to users.



Basics of Test-Driven Development (TDD)

Example List of Tests (Initial) - Motion Detection Engine

1. Initializing the Module starts the Motion Detection Engine.

2. Initial State is Unknown.

3. Callback is triggered on a state change.

4. Transition to Idle state if no motion in 5 seconds.

5. Transition to Movement state if Motion is sustained for 1 second.

6. Once entered, stay in Movement state for 5 seconds.

7. Sustained motion while in Movement extends the motion state.



Basics of Test-Driven Development (TDD)

Faking Dependencies

- Unit Under Test (UUT) relies on dependencies.

- Faking a dependency means replacing it by a 

Test Double, abstracted to the UUT.

- Test Double sets and manages expectations and 

returning parameters.

- Types of Test Doubles: Dummy, Stub, Mock.

- It may be done manually or by using 

Frameworks (e.g: CMock, CppUTest, FFF).

Test Double

Dummy Stub Mock



Basics of Test-Driven Development (TDD)

Benefits of TDD

- Software Development without needing Hardware.

- Catch bugs easier and faster.

- Definition of Done is clear.

- Improve Predictability of Development Cycle.

- Code-base feels less “fragile”.

- Overall Improvement of Code Quality.



TDD in Zephyr



TDD in Zephyr

Testing Frameworks Available

- ZTest, Zephyr Test Framework.

- FFF, Mocking.

- Twister, Test Runner.

- BabbleSim, Radio Simulator (e.g: Bluetooth).

- Pytest, Integration tests.



TDD in Zephyr

Pros

- Extensive Boards support.

- Inherent Abstractions and Generalized APIs

- Testing Frameworks Available.

Complexities

- Dealing with Device-Tree

- Dealing with Subsystems (Kconfig dependencies).



Faking Dependencies



Faking Dependencies in Zephyr - Subsystems

Alternatives

- Use an existing Zephyr emulator.

- Implement a Test-Double.

Implementing a Test-Double

- Approach: Link-Time Substitution.

- Disable Module using Kconfigs.

- Add minimal Test-Double, implementing the used APIs.

Image Source: https://marketplace.visualstudio.com/items?itemName=trond-snekvik.kconfig-lang



Faking Dependencies in Zephyr - Device-Tree

Alternatives

- Use an existing Zephyr emulator.

- Develop a Device-Tree Node Test-Double.

Implementing a DT-Node Test-Double

- Link Device-tree devices using Node-labels.

- Create a DT-Node Test-Double using the same APIs your 

dependency implements.

- Use the DT-Node Test-Double to emulate the expected behavior 

(set/check expectations, provide return parameters, etc).

Image Source: https://marketplace.visualstudio.com/items?itemName=trond-snekvik.devicetree



Live Demo



Q&A




